منابع مشابه
Understanding trained CNNs by indexing neuron selectivity
The impressive performance and plasticity of convolutional neural networks to solve different vision problems are shadowed by their black-box nature and its consequent lack of full understanding. To reduce this gap we propose to describe the activity of individual neurons by quantifying their inherent selectivity to specific properties. Our approach is based on the definition of feature selecti...
متن کاملContent-Based Image Retrieval Trained by Adaboosting
Due to the fact that different queries to a content-based image retrieval (CBIR) system emphasize different subsets of a large collection of features, most CBIR systems using only a few features are only suitable for retrieving certain types of images. In this research we combine a wide range of features, such as edge information, texture energy, and the HSV color distributions to form a featur...
متن کاملFuzzy relational classifier trained by fuzzy clustering
A novel approach to nonlinear classification is presented, in the training phase of the classifier, the training data is first clustered in an unsupervised way by fuzzy c-means or a similar algorithm. The class labels are not used in this step. Then, a fuzzy relation between the clusters and the class identifiers is computed. This approach allows the number of prototypes to be independent of th...
متن کاملCalibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation
The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...
متن کاملClassification of Brain Tumor by Combination of Pre-Trained VGG16 CNN
In recent years, brain tumors become the leading cause of death in the world. Detection and rapid classification of this tumor are very important and may indicate the likely diagnosis and treatment strategy. In this paper, we propose deep learning techniques based on the combinations of pre-trained VGG-16 CNNs to classify three types of brain tumors (i.e., meningioma, glioma, and pituitary tumo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Reviews Endocrinology
سال: 2019
ISSN: 1759-5029,1759-5037
DOI: 10.1038/s41574-019-0215-5